زمانبندی بیشینه موشکهای زمین به یک یا یکی سازی قابلیت‌های دفاع هوایی یک تا جنگی

محمدرضا، راهله نقوی

دکتران ارشد، دانشگاه فردوسی مشهد

گچیده
تهدیده‌های موشکی برای ناکارایی سپاه حالت اهمیت هستند زیرا به پیشرفت روزافزون موشک‌های مقابله با آنها بسیار دشوار گشته است؛ در این شرایط استفاده بهینه از سلاح‌های بالقوه‌ای در نتیجه جنگ‌های دریایی داشته باشد. مسئله زمانبندی سلاح در سیستم‌های دفاعی ناکارایی با استفاده از تکنیک‌های زیر بیان شده است و مدل راکتی فشرده و تکمیلی را در پنج‌تایی ر-author از جنگ‌های جدیده از هزینه سلاح‌های بالقوه‌ای و مدل‌های جدیده از تکنیک‌های زیر بیان شده است.

احتمال انحراف در مقابل حملات حاکم در گرد. برای حل این مسئله نشان داده شد و برای بهبود این روش بک یک کران بالا و یک کران پایین استفاده شد است. نتایج حاصل از این نشان دهنده که این الگو در اکثر موارد افراد بکس مسائل را در کنترل زمانبندی کرده است.

احتمال و پیش از ۶۰ درصد جواب‌ها در ۵ تا نمایهول قابل تشخیص است.

کلمات کلیدی: سلاح زمانبندی، سلاح، سیستم‌های ناکارایی، دفاع هوایی، الگوی کاری

مقدمه
دفاع از حیمن موشکی کشورهای از دید برای دارای اهمیت سیاسی و از جهت است. موشک‌های آیب نیز از این قاعده کلی مستند به علائم آنکه وجود شرایط امنیتی برای دارای این نوع تهدیده‌ای بسیار مشکل شده است. پیچیدگی این موشک‌ها به دلیل سرعت بالا و فدری است که در پنام شدن دارد. یکی از مهم‌ترین روش‌های پدافند هوایی در جهت مقابله با موشک‌های ناکارای استفاده از دفاع چند لایه‌ای همانند آنها که شامل استفاده از هوای‌پایین، موشک‌های زمین به یک و توبه‌ها به عنوان آن‌ها به دفع موشک‌ها است. این دخالت موشک‌ها در دفاع از لایه مانی برای بهبود مهم است. از آنجا که سلاح‌های بالقوه‌ای در سیستم‌های بالقوه‌ای سلاح‌های بالقوه‌ای به سلاح‌های بالقوه‌ای را پیشنهاد داد.

آنها بر اساسیز، کی می‌تواند مسئول در سیستم‌های بالقوه‌ای برای سلاح‌های زمانبندی برای سلاح‌های بالقوه‌ای را یک مسئولیت داد.

زمانبندی به معنی تخصیص مدت محدود به فعالیت‌هایی است که به این معنی دارد که مدت سیستم در این مدت محدودیت بالقوه‌ای ندارد. در این مدت، مدت محدودیت بالقوه‌ای مورد استفاده قرار می‌گیرد. به کارگیری زمانبندی در این حوزه می‌تواند به استفاده مؤثر از تجهیزات منجر شود به‌کنون امسال از ابزارهای زمانبندی جدید‌ترین حوزه‌های مختلف آن ارائه شده است. سلاح‌های نظامی مطرح شده است، با پایان‌نامه‌هایی بازدهی میدانی به وسیله سلاح‌های بالقوه‌ای,

الف) معرفی مسئله زمانبندی سلاح در حال حاضر.

ب) در نظر گرفتن تاکید اهداف استفاده کارهای دیرکشن و نظارت.

پ) ارائه روش حل دقیق بستگی به روش مناسب خواهد بود.

ب) ارائه روش حل دقیق بستگی به روش مناسب خواهد بود.

زمانبندی در حوزه نظارتی دارای قدمت می‌تواند و شایع بودن گفت که اولین بار در بین گروه شنای استفاده شدند. شرایط خاص و استراتژیک در جنگ‌های مختلف می‌تواند استفاده بهینه از مسئله بالقوه‌ای کند و به عنوان بالقوه‌ای افزایش یافته است. در این بخش

پیشینه تحقیق

زمانبندی در حوزه نظارتی دارای قدمت می‌تواند و شایع بودن گفت که اولین بار در بین گروه شنای استفاده شدند. شرایط خاص و استراتژیک در جنگ‌های مختلف می‌تواند استفاده بهینه از مسئله بالقوه‌ای کند و به عنوان بالقوه‌ای افزایش یافته است. در این بخش
ابن‌داده، مسئولیت تخصیص سلاح به اهداف تمرکز کرده و مقالات این بخش را مورز اخلاقی خواهیم نمود. مسئولیت تخصیص سلاح دارای این نوع گوناگونی است که یکی از آنها استفاده از این مسئولیت در زمان‌بندی سلاح‌های پدافند هوایی است. که در انتهای این بخش، ادبای زمان‌بندی سلاح در مقاله از تاریخی نیز مورد بررسی قرار خواهد گرفت. لازم به توضیح است که در مام این زمینه، منظور از عبارت "نفوذه" موشکی است که در طرح دسته به هم‌نام نشکسته و منظور از عبارت "موشک" موشکی است که برای مخلوط با تهدیدگذاری از طرف سلاح ناشرین شکل می‌شود.

(WTA) مسئولیت تخصیص سلاح به اهداف از سوی تخصصی S n به معنای "به تحویل به امید راهبردی احتمال نجات تهدید‌ها" تعریف می‌گردد.

این مسئولیت به دلیل افزایش ۱۹۵۰ مطرح گردید و در متن مورد بحث این مسئولیت را می‌توان در مرجع [۴] جستجو نمود. در سال ۲۰۰۴ مسئولیت تخصصی سلاح به همدلی با استفاده از مقدماتی در مقاله با اسلامی و همکارشان برای سیستم اطلاعات این مسئولیت مورد بررسی قرار گرفت. در این مسئولیت تلفیق شده است که گسترش زمان فرض قرار دادن قبل هدف به مرحله از این مسئولیت نیز از این مسئولیت ارائه می‌شود.

مسئولیت تخصصی سلاح به اهداف از سوی تخصصی WTA برای اولین بار در این مقاله مسئولیت ۲۰۰۴ سلاح و ۲۰۰۴ تهیه به صورت بهینه جهت شد.

در برنامه‌بری برای حملات، در دسترس اصلی با روش توجه قرار گیرد، به یک نشکنی از تخصصی سلاح به اهداف است که نمونه‌هایی که تاکنون به آنها اشاره شده می‌باشد، به این بخش پرداخته‌اند. به همین سبب تغییرات تولیده شود و زمان‌بندی شکل بر روی سلاح‌های آن است. سال ۲۰۱۰، مسئولیت تخصصی سلاح به هدف دادن این مسئولیت استفاده از سیستم تفاوت‌های به دلیل حملات موشکی بر سلاح‌های استفاده از مسئولیت موشکی (MAP) و مسئولیت موشکی (WTA) تعریف می‌گردد.

همگان در این مسئولیت خود را حداکثر سازی تهدید‌های خسته شده و نیز حداکثر سازی هزینه استفاده از نیازهای تهیه موشک‌های مختلف از مهارت و روش‌های مختلف تعریف کرده‌اند.

امنیت این مسئولیت برای یک ناگهان در یک تازه‌ترین تاریخ شده است که همگانی، یک ناگهان شنیده‌اند زمان‌بندی با سلاح‌های مختلف نشان داده‌اند. در نهایت، در روش اجرایی حیاتی برای تخصیص بهترین ترکب سلاح و هدف و تنظیم تخصص سلاح به هم‌نام تهدید‌ها ارائه شده است.

تعریف سلاح و مدل‌سازی

یکی از نشکنی‌های ویژه‌تر و تخصصی‌تر استفاده در سلاح‌های موشکی محدودیت این یک همان گونه که اشاره شد، برای منطق‌های تالابی در مقاله تبدیل موشکی، به یکی از نشکنی‌های پایدار موشکی معمولاً موشک‌های کوتاه بردا و با ناحیه برگ و تحقیق سلاح ناشرین شکل می‌شود.

ردیابی موشک به سمت تهدید ممکن و جدید بود. اما از آنجا که مهمیت امکان‌پذیری موشک‌های ناشرین برای پیکر زمان‌بندی در جنگ‌های دارای اهمیت بسیاری از سوی است. و با توجه مطالعات این مسئولیت نیز سیستم قدرت و همگانی از آنجا که تهدید تا به حدود بسیار در حال حاضر حدود هستند. به‌طور کلی مسئولیت از ناحیه برگ سلاح‌های دیگر با زمان‌بندی خارج نموده که همان خروج تهدید از برگ سلاح به جمعه تحلیل کارهایی در این مسئولیت ممکن شده است. انجام کار از این زمان غیرممکن است. همان گونه که شکوک به ناحیه خارج از برگ سلاح ناشرین خواهد بود. شرایط فوق را در مسئولیت نمایش می‌دهد.

در این قابلیت علی‌رغم زمان و ناحیه شرایط تهدید از ناحیه برگ، به‌طور مستمر تهدید و فعالیت اولیه آن و نیز سرعت موشک پدافندی، تعادلی کشا و به سمت تهدید ممکن خواهد بود. اما از آنجا که مهمیتی امکان‌پذیری موشک‌های ناشرین برای پیکر زمان‌بندی در جنگ‌های دارای اهمیت باعث است که در طبق مسئولیت موشک، است. و موضوع استفاده به‌طور کلی مسئولیت امکان‌پذیری موشک است. از این موشک‌ها ممکن است SLS1 این موضوع را با هدف از شکوک منابع از این موشک در زمان‌بندی محدود، با طبق این فرض سپس از شکوک به سمت یک تهدید تهیه منظور نتیجه خواهیم شد و تکنیک سپس از یک برخورد موشک به همدلی موشک نظر شکوک برگ می‌گردد به سمت همان تهدید انجام خواهد داشت. در نظر گرفت تکنیک SLS

1 Missile Allocation Problem
2 Shoot-look-shoot

β
۳

به طور کلی برای هر شیلک سلاح پدافند موشکی سه زمان اصلی وجود دارد: ۱- زمان آماده‌سازی سلاح که همان شناسایی هدف، جرخت و تظیم زاویه هدف‌گیری و... است. ۲- زمان پرتاب که برای تمامی پرتاب‌ها مقدار ثابتی است. ۳- زمان پرواز موشک تا رسیدن به هدف.

از زمان آغاز از این پژوهش با عنوان زمان آماده‌سازی پذیرفته می‌شود. این می‌تواند به معنی زمان لازم یا جهت آماده‌سازی سلاح است، اگر بعد از تهدید آشکار شده قرار گیرد، زمان پرتاب نتیجه آنها به نوع سلاح پدافند موشکی مورد استفاده است. اما زمان پرواز موشک مقداری مناسبی از دست خواهد داد که دلیل این امر، حرکت هیزمان موشک و تهدید است. بنابراین لحظه زمانی که این دو موشک به یکدیگر می‌رسند برای متدهم زمان طی کردن مسیر قابل‌توجهی بین دو موشک به سرعت آنها خواهد بودکه دنیا که در اینجا لازم به توضیح آن است، مسیر حمل سلاح و موشک است. در این پژوهش به منظور ساده‌سازی، فرض شده که مسیر حرکت تهدید و موشک به صورت خط مستقیم و سرعت آنها یکنواخت است در حالتی که در دنبال ایفای، موشک‌ها و تهدید یا به منظور فرآیند کمکی ساخت و درک تعدادی غیرخاطری و بیش‌پیش‌نشده از خود برزد دهند آن این موضوع در زمان‌بندی موشک‌ها فقط در تغییر مسافت طی شده است. اگر یک مسافت مسیر غیرخطی طی شده برای موشک و تهدید را با یک ضریب ساده مشترک از مسافت مسیر مستقیم در نظر گرفت، نتایج به دست آمده از این پژوهش همچنین دارای اعتبار است.

در نهایت هدف مسئله این است که با در نظر گرفتن تعداد مشخصی تهدید، احتمال نجات زمین‌را حاکم کند که این احتمال معادل با احتمال عدم برخورد هیچ یک از موشک‌های تهدید کننده است.

حال مسئله تشکیل شده را در قالب یک مدل ریاضی غیرخطی بیان خواهیم کرد. در این مدل

\[N = [l_{1}, l_{n}] \]

مجموعه تهدید‌های و اندیس‌های آن خواهند بود. همان‌گونه که قبل اشاره شد، می‌توان به این هر یک از تهدید‌ها یک زنجیره از کارا و وجود دارد که اندیس کارها \(k \) در نظر گرفته شده است.

همچنین اگر قرار باشد تمامی کارهای مالولی مختلف را روی ماتریس زمان‌بندی کنیم \(A_{n} \) یا جایگاه وجود خواهید داشت که اندیس این جایگاه در مدل ۲ است. جدول ۱ پارامترهای مدل را ببینید. پارامتر دقت الگوی آن است که در صورت عدم قابلیت با تهدید، احتمال برخورد آن با زمین و نیز خرابی حالت خواهد بود. با استفاده از این پارامتر می‌توان حدود انتظار را شناسایی کرد. در این پژوهش فرض شده انداده حمله از ابتدا مشخص است بیشتر از طریق رادارها می‌توان تمامی تهدید‌های اطراف زمین را شناسایی نسود. جدول ۲ مغیره‌های تصادفی مدل و جدول ۳ مغیره تصادفی مدل را معرفی می‌کند.
جدول ۱: معنی‌های پارامترهای مدل

<table>
<thead>
<tr>
<th>معنی</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان ورود تهدید به محورما به سطح سلاح پدافندی (زودترین زمان ممکن برای شروع بردارش اولین کار از زنجره)</td>
<td>(r_i)</td>
</tr>
<tr>
<td>زمان خروج تهدید از محورما به سطح سلاح پدافندی (زمان تحول مارول / ام)</td>
<td>(\delta_i)</td>
</tr>
<tr>
<td>مدت زمان برتاب</td>
<td>(d)</td>
</tr>
<tr>
<td>احتمال اصابت موشک پدافندی به تهدید</td>
<td>(p_i)</td>
</tr>
<tr>
<td>زمان امادهسازی بین دو شلیک متواتر به تهدیدهای اول</td>
<td>(s_i)</td>
</tr>
<tr>
<td>فاصله اولیه تهدید از رزمیون در لحظه شناسایی</td>
<td>(\Delta_i)</td>
</tr>
<tr>
<td>دقت (احتمال برخورد) (تهدید نیا)</td>
<td>(\eta_i)</td>
</tr>
<tr>
<td>سرعت حركت تهدید از (تابیت)</td>
<td>(V_i)</td>
</tr>
<tr>
<td>سرعت حركة شلیک پدافندی به سمت اهداف در نظر گرفت شده (تابیت)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>عددی یونک</td>
<td>(M)</td>
</tr>
</tbody>
</table>

جدول ۲: معنی‌های متغیرهای تصادفی

<table>
<thead>
<tr>
<th>معنی</th>
<th>متغیر تصادفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان پایان شلیک ام به سمت تهدید / وقتی این شلیک در جایگاه (k) ام کل شلیک‌ها قرار گیرد. توزیع غیر یکنواخت گسته است. (چرا که زمان پایان همه کارهای زنجره از به جز کار اول، وابسته به نتیجه کارهای قبلی است. هیچ‌یکی شلیک‌های متعدد به سمت یک تهدید از یکدیگر مستقل نیستند.</td>
<td>(Y_{nk})</td>
</tr>
<tr>
<td>اگر شلیک (k) ام به سمت تهدید / موفق شود</td>
<td>(W_{nk})</td>
</tr>
<tr>
<td>در غیر این صورت</td>
<td>۱</td>
</tr>
<tr>
<td>مدت زمان پرواز موشک پدافندی تا رسیدن به تهدید از وقتی شلیک (k) کم به سمت این تهدید در جایگاه (m) کل شلیک‌هایشانش (این پارامتر از طریق روابط فیزیکی قابل محاسبه است)</td>
<td>(L_{nm})</td>
</tr>
</tbody>
</table>

جدول ۳: معنی متغیر تصمیم مدل

<table>
<thead>
<tr>
<th>معنی</th>
<th>متغیر تصادفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اگر شلیک (k) ام به سمت تهدید از جایگاه (h) کل شلیک‌ها قرار گیرد</td>
<td>(X_{nh})</td>
</tr>
<tr>
<td>در غیر این صورت</td>
<td>۰</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{Max} & \quad \prod_{j=1}^{n} \left(1 - \eta_j \right) \left(\sum_{r=1}^{A} X_{jkr} P(Y_{jkr} > \delta_j) + \right. \\
& \\
& + \left. \sum_{u=2}^{v_j} \left[\sum_{s=v_j+1}^{A} X_{j(u-\eta_s)} X_{jur} P(Y_{jur} > \delta_j \mid (Y_{j(u-\eta_s) < \delta_j & W_{jur} = 0}) \right] \right) \\
& + \sum_{s=v_j+1}^{A} X_{jv_j} P(Y_{jv_j} < \delta_j & W_{jv_j} = 0) \right) \right)
\end{align*}
\]

s.t
\[
\begin{align*}
\sum_{r=1}^{A} X_{jkr} &= 1 \quad \forall j = 1,...,n; \quad k = 1,...,v_j \\
\sum_{j=1}^{n} \sum_{k=1}^{A} X_{jkr} &= 1 \quad \forall r = 1,...,A \\
rX_{jkr} - sX_{jls} &< 0 \quad \forall j = 1,...,n; \quad k, l = 1,...,v_j \quad & k < l; \quad \forall r, s = 1,...,A (4) \\
Y_{jkr} - d - r_j &\geq 0 \quad \forall j = 1,...,n; \quad k = 1,...,v_j \\
Y_{jkr} + s_{ji} &\leq Y_{j(r+i)} - d + M(2 - X_{jkr} + X_{d(r+i)}) \quad \forall i, j = 1,...,n \quad & i \neq j; \\
Y_{jkr} + L_{jkr} &\leq Y_{j(k+\eta)} - d + M(2 - X_{jkr} + X_{j(k+\eta)}) \quad \forall i, j = 1,...,n \quad & i \neq j; \\
L_{jkr} (p + V_j) &= \Delta_j - V_j Y_{jkr} \quad \forall j = 1,...,n; \quad k = 1,...,v_j \quad & r = 1,...,A \\
Y_{jkr} &\sim \text{General Discrete Distribution} \quad \forall j = 1,...,n; \quad k = 1,...,v_j \quad & r = 1,...,A (9) \\
W_{jk} &\sim \text{Bernoulli}(p_{jk}) \quad \forall j = 1,...,n; \quad k = 1,...,v_j \\
X_{jkr} &\in \{0,1\} \quad \forall j = 1,...,n; \quad k = 1,...,v_j \quad & r = 1,...,A (11)
\end{align*}
\]
برد سلاح و زورت در معود تحولی از انجام شده است و تمامی آنها با شکست مواجه شدند. این حالت نیز تهدید از سالم از محدوده برد سلاح خارج می‌گردد.

راسته (2) به معنای این است که هر یک از شلیک‌های این رشته در محدودیت (3) هر شلیک‌ها را تابه یا یک شلیک تخصیص می‌دهد. محدودیت (4) برتبد شلیک‌ها را به سمت هر تهیه کننده می‌کند که دیگر شلیک دوم بعد از شلیک اول زمان‌های دیگر در محدودیت (5) این موضوع که زمان‌هایی که کار باید پرگزت از زمان ورود آن کار به اطلاع زمان پرگزت بادند، مطرح می‌شود. اگر چه شلیک پیاپی به سمت دو تهدید متفاوت صورت پذیرد لازم است که سالما آماده‌سازی یا جهت چرخدن از تهدید لازم به تهیه دوی ماهور که این مطلوب در محدودیت (6) حفاظت گردیده است. همه‌چیز اگر چه شلیک پیاپی به سمت یک تهیه باند طبق فرض SLS لازم است اینجا نتیجه شلیک اول محدودیت (7) و این موضوع از زمان فرسوده جهت تبعیض نتیجه شم شلیک از قواعد فیزیکی قابل محسوسی است که این ساعت در محدودیت (8) برای تمامی بخش‌های از معیار (1) و (11) نوع متفاوت‌های مدل را (Xn، Yn) دارای توزیع برتری با پارامتر Wn یک می‌تواند قطعی برناولی است. از اینجا که مدل این مسئله میدان و تصادفی است استفاده از ترم‌افزارهای تحقیق در عملیات برای حل مدل آن متفاوت نیست، به همین جهت در این پژوهش برای حل مسئله مورد بحث از دانشمند شاخه و کرآن استفاده می‌کردیم. چون شاخه و کرآن تمام پایگاه جواب‌رسانی داده‌شده را برای یکتا کردن جواب به نهایه جواب‌هایی که معین از جواب‌های غیر معنی‌گوی جواب‌های بی‌کیفیتی می‌سوزند. روشن شاخه و کرآن با روشکار عمیق تخصصی استفاده شده است. با شرود از گروه ریش، تعدادی از هر ساختار بخش گرفته شده که در محدودیت (9) به پرگزت نمایندگی و محدودیت (10) جواب‌های سطوح به دفع نیز به همین طرح اندازه‌گیری می‌شود. ساختار کلی که از این طرح حاصل می‌شود را «برای خود جواب‌هایی» می‌نامند. روشن شاخت راب یا تحت پاشده که تمامی عناصر جواب مسئله را در یک گروه که این امر در مورد مسئله این پژوهش به معنای بررسی تمامی انگویی قرار دادن کرار به روی سلاح پدافندی است. به همین منظور در هر مرحله بر روی تمامی کارهایی که امکان قرار دادن آنها بر روی سلاح و وجود دارد، شاخت راب جدید می‌شود. از اینجا که کرارها در این مسئله به عنوان یک زنجیره در نظر گرفته شده‌اند، پس لازم است در هر مرحله کارهایی که پیش‌بوی محاسبه مسئولیت آنها بیشترین حس‌سازی یا کارهایی مثل شاخت‌سازی باید انتخاب شوند. این شاخت‌سازی به عنوان مثال می‌توان چند تهیه به صورت 2 در نظر گرفت.

شکل 2: مازول‌ها و کارهای مسئول

3 Branch-and-bound
4 Branch and Bound
5 Depth-first
6 Search Tree
فرض کنید سلاح پدافندی دارای سرعت معادل ۷۸۰ متر بر ثانیه و زمان پرتاب معادل ۴ ثانیه دارد. نظر گرفتن، شده است. با توجه به اطلاعات این مثال، شکل ۲ بخشی از درخت جستجو و نوع شاخه‌ریزی را نشان می‌دهد.

در روش شاخه‌زنی برای مثال

۷Remaining Time
۸Partial Schedule
در این خصیصه توصیف‌نامه محاسباتی به دست آمده از اجرای الگوریتم شاخه و گاز نوستالگی داده شده در این تحقیق بر روی 200 نمونه مستقل ایجادشده خواهیم پرداخت. پس باید برای این کران بایستی پیشانی شده جواب‌های مستقل را در حالت هر دو این کران و بدون کران مقایسه شود.

الگوریتم شاخه و گاز و جواب‌های مربوطه را محسوب و در رابطه با کران داته می‌شود.

نتایج و بحث

در این بخش به اجرای الگوریتم شاخه و گاز و جواب‌های مربوطه را محسوب و در رابطه با کران داته می‌شود.

۸
مسئله ابت. جدول 4 کارابی‌گری آمادگی شاخه و کران ارائه‌شده را نشان می‌دهد که در 5 تاییه، الگوریتم به‌طور مداوم 100 درصد از جواب‌های بهینه دست‌یافته و این مقدار در 80 تاییه به 81 درصد می‌رسد.

جدول 4: عملکرد روش شاخه و کران ارائه‌شده در بزرگ‌ترین محدوده

<table>
<thead>
<tr>
<th>TL</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>3.514</td>
<td>3.974</td>
<td>5.027</td>
<td>6.244</td>
<td>7.284</td>
<td>7.979</td>
<td>8.1</td>
</tr>
<tr>
<td>#opt</td>
<td>142</td>
<td>161</td>
<td>184</td>
<td>160</td>
<td>124</td>
<td>133</td>
<td>163</td>
</tr>
</tbody>
</table>

از ریزابی عملکرد جواب ابتینه در این قسمت نتایج حاصل از اجرای الگوریتم کران پایین را با جواب بهینه مقایسه می‌کنیم. شکل 4 این رابطه در محدوده بین APD و تعداد کمتر با از 30 تا می‌تواند استفاده شود. به دلیل کمتر بودن تعداد کارا در حاشیه کران پایین، الگوریتم ابتینه توانست دیگر 16 درصد ابتینه در محدوده بین TL و APD را با جواب بهینه مقایسه کند. در این محدوده تعداد کارا کاهش چشمگیری در آن ایجاد می‌شود. به دلیل این کاهش را می‌توان در ترازی ریاضی محاسبه کران پایین دانست. این رابطه در ابتینه می‌تواند با افزایش دور انتقال متغیر به همین دلیل است که تعداد جواب‌های ابتینه برای با جواب بهینه در این دسته از مسئله پیش‌تر از بقیه دست‌یافته است. علاوه بر این لازم به ذکر است که جواب حاصل از کران پایین پیش‌نهادی در 10 نمونه مسئله مساوی با جواب بهینه بوده است.

نتایج گسترده

در این پژوهش، مسئله زمان‌بندی سلاح در سیستم دفاعی ناوبری‌های متریکی گرفته شده است که مнструات و مدل‌های آن تصادفی بوده و تابع هدف غیرخطی برای محاسبه احتمال تجارت رژیماکی است. از آنجا که مدل مسئله غیرخطی، تصادفی و غیر قابل است. برای حل مسئله از روش شاخه و کران استفاده شده است. نتایج محاسباتی نشان می‌دهد که الگوریتم شاخه و کران پیشنهادی قادر است در 60 تاییه برای برد 100 درصد از جواب‌های بهینه دست‌یابد کند.

از انجا که این مسئله در حوزه خود بسیار جدی است و نیز به دلیل نیزندیکی آن به حوزه عملیاتی چنده‌دیسپلاش بازی‌ای، توسعه‌های زیادی را می‌توان برای آن تصور شد. از لحاظ حاصل آن است که همین مسئله به لحاظ نمود پرداختن به مسئله یکپارچه پر ریسی شود. اما در واقعیت معمولاً جنگ سلاح‌های یکپارچه بر روی یک رژیم می‌تواند به دلیل ساختار انرژی‌های مختلف که انتقال دفاع لازم‌های برای پرداختن به جنگ سلاح‌های یکپارچه انتخاب مورد بررسی قرار گیرد.

مراجع

